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Abstract
The lattice KdV equation is defined on an associative algebra and a new initial
value problem on the lattice KdV is considered. This leads to two new families
of iterative mappings (discrete equations of motion) which can be solved for
all (discrete) times. Imposing a certain commutation relation on the algebra
makes it possible to prove (using a Yang–Baxter structure) that these mappings
are quantum integrable maps. In the classical limit the maps become a new
class of integrable mappings in the sense of Liouville–Arnold–Veselov (LAV).

PACS numbers: 02.30.Ik, 03.65.Fd, 04.60.Nc, 05.50.+q

1. Introduction

The lattice KdV equation [26] already has quite a history (see [23] for a review). By performing
a particular continuum limit, the full hierarchy of the KdV and higher-order KdV equations
can be derived, as was shown in [36]. In [30] and [12] a periodic initial value problem
was imposed on the lattice KdV; this leads to finite-dimensional reductions that are integrable
rational mappings. A discrete analogue of the Painlevé II equation was derived from the lattice
KdV in [25], see also [18]. In [22, 11] the rational mappings arising from a periodic initial
value problem on the lattice KdV were quantized in the sense that the variables were replaced
by their noncommuting analogues via the usual Dirac canonical quantization; the integrability
of these ‘quantum’ mappings was proven using an associated quantum Yang–Baxter structure.
In [29] it was shown that the lattice KdV can be used as a convergence acceleration algorithm.

In this paper a new initial value problem is imposed on the lattice KdV equation: a finite
(or open-ended) ‘staircase’, as opposed to the periodic initial value problem of [30] and [12].
The quantum mappings (i.e., the mappings in terms of noncommuting variables) are derived
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Figure 1. Elementary plaquette.

first, giving a new family of multi-dimensional quantum mappings. Taking the classical limit,
a new family of multi-dimensional (classical) mappings is obtained. In both the quantum and
classical cases, the discrete equations of motion (the maps themselves) can be solved explicitly
for all time. (In this sense, the new mappings that arise from a finite staircase are simpler than
those that arise from a periodic initial value problem. Even in the classical case, the solution
of the mappings from a periodic initial value problem is still an object of research [24, 20].)

2. The lattice KdV equation

The lattice KdV partial difference equation relates the values of a field variable un,m around
an elementary plaquette (a quadrilateral) as follows,

((p − q)I + un,m+1 − un+1,m)((p + q)I + un,m − un+1,m+1) = (p2 − q2)I (2.1)

n,m ∈ Z and where (n,m) can be taken as the coordinates of the field variable un,m as depicted
in figure 1. (Equation (2.1) is more accurately termed the ‘lattice potential KdV’; however,
we shall continue to refer to it as the lattice KdV as this is the usual name in the literature, see
[23].) The lattice parameters p, q ∈ C, although it will be assumed later, for the purposes of
quantization, that p2 − q2 ∈ R. In a somewhat imprecise sense, the lattice parameters p and
q may be considered as the ‘separation’ of the lattice sites, as indicated in figure 1. In this
paper, the field variables un,m ∈ A, where A is an arbitrary associative algebra with unit I.
The only additional structure assumed of A at this stage is the invertibility of the terms
((p + q)I + un,m −un+1,m+1), for all n,m ∈ Z. For convenience, I will not be written explicitly
in expressions such as pI (i.e., in this case we would simply write p). (The lattice KdV, (2.1),
still obeys the property of higher-dimensional consistency—the CAC property [27]—in this
associative algebra case. The higher-dimensional consistency of some other integrable lattice
equations in the associative algebra case was recently investigated in [8].)

It is easily seen that, on knowing the value of the field variable at three of the four sites
around an elementary plaquette, the lattice KdV equation (2.1) gives the value of the field
variable at the fourth site. This allows for the consideration of initial value problems on
the lattice. Periodic initial value problems were first considered in [30], where the lattice
KdV (2.1) was one of the partial difference equations considered (along with the mixed
lattice MKdV-Toda equation). This led to finite-dimensional reductions of the lattice, i.e.,
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Figure 2. Evolution starting from an initial value staircase sandwiched between two diagonals
consisting of infinity-valued field variables. The infinity-valued field variables are denoted by the
larger black dots.

multi-dimensional families of mappings. These mappings turned out to be integrable [12]. In
this paper a ‘finite staircase’ initial value problem is considered. This term is explained in the
next section.

3. Finite staircase initial value problem

Previously, integrable mappings (in both the classical and quantum context) have been derived
by considering ‘staircase’ or ‘sawtooth’ initial value problems on integrable lattices that were
either periodic (such as in [15, 34, 14, 30, 12]) or quasiperiodic (such as in [15, 34, 13]). In this
paper we give the first consideration of ‘finite staircase’ (or open-ended) initial value problems
on the lattice. As in the above references, the lattice initial conditions consist of a staircase or
‘sawtooth’ pattern. What is new here is that the evolution of interest is considered to occur
between two diagonals of infinity-valued field variables, as shown in figure 2. Infinity-valued
field variables are given at sites for which n + m = 0, and at the parallel diagonal occurring
immediately after the staircase of initial values. The initial data for the field variables are
given along the staircase, as indicated in figure 2, as

a2j := uj,j a2j+1 := uj+1,j j ∈ N.

As specification of the value of the field variable at three points around an elementary
plaquette gives the value of the field variable at the fourth point via the lattice KdV
equation (2.1), it is easily seen how the ‘evolution’ proceeds. Points diagonally below and
to the left are considered as being temporally ‘later’, and the ‘time update’ is denoted by an
over-tilde. Also note that the backwards temporal evolution is given explicitly via the lattice
KdV equation. And, further to this, it would be possible to consider an evolution outside the
infinity-valued field variables; however, this evolution will not be considered here.
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With regards to this type of initial condition for a discrete-time system, a precursor can
be found in the ‘open lattice’ boundary condition applied to the (classical) discrete-time Toda
lattice, as given by [31] (where LAV integrability was also proven). With regards to the lattice
KdV, fixed columns of infinity-valued field variables were imposed in an application of the
lattice KdV to convergence acceleration algorithms [29]. Nevertheless, the type of initial
conditions on a lattice equation as given here, and the considerations, are new.

We consider two canonical cases of initial value staircase (those with an even number
of initial value points and those with an odd number). All other evolutions along the lattice
between two diagonals of infinity-valued field variables can be re-expressed in the form shown
in figure 2 by a change of parameters and/or an evolution.

In the next two sections the evolutions that follow from the style of initial value problem
shown in figure 2 will be explicitly considered, leading to multi-dimensional mappings, which
will later be shown to be integrable.

3.1. The even staircase

Consider a staircase like that shown in figure 2 and consisting of an even number of points.
Let the number of points N = 2M , where M ∈ N,M > 1. The lattice KdV equation (2.1)
may be rewritten in the form

un,m+1 = un+1,m + q − p + (p2 − q2)(p + q + un,m − un+1,m+1)
−1. (3.1)

Throughout this paper we proceed in a formal sense, and, specifically, we assume the
invertibility of (p + q + un,m − un+1,m+1). As of yet, no mention has been made of the
commutativity, or otherwise, of the field variables. For the moment we still refrain from
specifying commutation relations (no commuting will occur).

Equation (3.1) and figure 2 lead to

ã1 = a1 + q − p

ã2j+1 = a2j+1 + q − p + (p2 − q2)(p + q + a2j − a2j+2)
−1

ã2j = a2j + q − p + (p2 − q2)(p + q + ã2j−1 − ã2j+1)
−1

ãN = aN + q − p

(3.2)

for 1 � j < M . The first of these equations is obtained by setting a0 ≡ u0,0 to a0 = cI , where
c ∈ C, and taking the limit c → ∞. (This is straightfoward in a finite-dimensional matrix
representation.) The last equation is obtained similarly. Noting that the natural variables for
the mapping appear to be the differences of adjacent even-numbered or adjacent odd-numbered
field variables, define (as in [30, 12, 22, 11])

vk := p + q + ak − ak+2 k ∈ Z (3.3)

(for this mapping we are interested in 1 � k � N − 2). Define the constant

a := q2 − p2.

Therefore the mapping reads

ṽ1 = v1 + av−1
2

ṽ2i+1 = v2i+1 − av−1
2i + av−1

2i+2

ṽ2i = v2i − aṽ−1
2i−1 + aṽ−1

2i+1

ṽN−2 = vN−2 − aṽ−1
N−3

(3.4)

for 1 � i < M − 1. At this stage (before the specification of commutation relations) a finite-
dimensional representation of A could be considered where the {vi} are invertible matrices of
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some finite dimension. The classical (i.e., commuting algebra A ≡ C) case with M = 2 was
given previously in [35].

We will say that the mapping (3.4) has lE := M − 1 ‘degrees-of-freedom’. However, it is
not strictly correct to number the degrees-of-freedom when the map is defined on A without
specifying appropriate commutation relations. Hence lE := M − 1, strictly speaking, only
labels the length of the initial value staircase that the mapping is derived from. Later, in
section 7, commutation relations are specified, making it possible to count the actual number
of degrees-of-freedom.

It is evident from the definitions that knowing the value of a1 along with the values
of all {v2i−1} allows for the complete reconstruction of the values of the {a2i−1}. From
equation (3.2) it is seen that a1 evolves as ã1 = a1 + q − p, ˜̃a1 = a1 + 2(q − p), . . . .

Therefore, also evolving with the map (3.4) allows the reconstruction of the values of the
odd-numbered ai at any time-level. Similarly, knowing the value of aN along with the values
of all of the {v2i} allows the reconstruction of the even-numbered ai .

3.2. The odd staircase

Consider a staircase like that shown in figure 2 and consisting of an odd number of points. Let
the number of points N = 2M + 1, where M ∈ N,M > 1.

Equation (3.1) and figure 2 lead to

ã1 = a1 + q − p

ã2i+1 = a2i+1 + q − p + (p2 − q2)(p + q + a2i − a2i+2)
−1

ãN = aN + q − p

ã2j = a2j + q − p + (p2 − q2)(p + q + ã2j−1 − ã2j+1)
−1

(3.5)

for 1 � i < M, 1 � j � M . Hence, similarly to section 3.1, the mapping reads

ṽ1 = v1 + av−1
2

ṽ2i+1 = v2i+1 − av−1
2i + av−1

2i+2

ṽN−2 = vN−2 − aṽ−1
N−3

ṽ2j = v2j − aṽ−1
2j−1 + aṽ−1

2j+1

(3.6)

for 1 � i < M − 1, 1 � j � M − 1.
It is easily seen that

M∑
j=1

v2j−1 =: ν (3.7)

is a constant of the mapping (i.e., it is an invariant of the time-evolution given by the mapping).
Later, in section 7, after specifying appropriate commutation relations, it will be seen to be a
Casimir.

We will say that the ‘odd’ mapping, (3.6), has lO := M − 1 ‘degrees-of-freedom’.
However, note again that ‘degrees-of-freedom’ does not strictly apply until appropriate
commutation relations are specified.

Again, knowing the value of one odd and one even ai allows for the reconstruction of the
original lattice variables; however, this time, things are not quite so simple with regards to the
reconstruction at later ‘times’. This is, of course, due to the lack of a linearly evolving a2i in
this case.
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4. Lax matrices

In this section, Lax matrices are derived for the mappings given in the previous section. The
Lax matrices give the invariants of the mapping.

The Lax matrices are derived using the Lax matrices for the lattice KdV equation. (The
Lax matrices continue to hold in the associative algebra case; the lattice KdV defined on
A, (2.1), follows from the Lax pair via a straightforward calculation. Alternatively, the Lax
matrices can be derived from equation (2.1) by the algorithm based on the CAC property that
was given in [9] and [21].) The Lax pair for the lattice KdV consists of an L-part, which
effects a ‘horizontal’ movement in the associated linear problem,

L(n,m) := U(n,m)PU
−1
(n+1,m)

where

U(n,m) =
(

1 0
un,m 1

)
P =

(
p 1
k2 p

)
and an M-part, which effects a ‘vertical’ movement,

M(n,m) := U(n,m)QU
−1
(n,m+1)

where

Q =
(

q 1
k2 q

)
.

The associated linear problem is as follows:

L(n,m)�n,m = (p − k)�n+1,m M(n,m)�n,m = (q − k)�n,m+1.

We first consider the even case, as it turns out that the odd case is, for the most part, the
same as the even case but with a slight complication at the end of the initial value staircase to
account for the last lattice site. Suppose that 2 � m � M −2 and consider the compatibility of
the paths shown in figure 3. The anticlockwise path a2m−1 → a2m → ã2m−1 → ã2m → ã2m+1

is effected by

L̃2mM̃2m−1L̃
−1
2m−1M2m−1.

The clockwise path a2m−1 → a2m → a2m+1 → a2m+2 → ã2m+1 is effected by

L̃
−1
2m+1M2m+1L2mM2m−1.

Equating the anticlockwise and clockwise paths gives

Ã2mPÃ
−1
2m+1Ã2m−1QÃ

−1
2mA2mP−1Ã

−1
2m−1A2m−1QA

−1
2m

= A2m+2P
−1Ã

−1
2m+1A2m+1QA

−1
2m+2A2mPA

−1
2m+1A2m−1QA

−1
2m (4.1)

where, for instance,

A2m =
(

1 0
a2m 1

)
.

This implies the discrete-time Zakharov–Shabat system

L̃jMj = Mj+1Lj (4.2)

where

Lj =
(

q 1
k2 − q2 0

)
A

−1
2j+2A2jPA

−1
2j+1A2j−1

(
1 0
q 1

)
(4.3)
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Figure 3. The Lax matrices for the mappings are derived by a consideration of the compatibility
of the two paths shown.

and

Mj =
(

q 1

k2 − q2 0

)
Ã

−1
2j A2j

(
−p 1

k2 −p

)
Ã

−1
2j−1A2j−1

(
1 0
q 1

)
. (4.4)

Using the definitions (3.3), the lattice KdV (2.1), and defining

λ := k2 − q2

gives

Lj = V2jV2j−1 V2j =
(

v2j 1

λ 0

)
V2j−1 =

(
v2j−1 1

λ + a 0

)
(4.5)

and

Mj = W2jW2j−1 W2j =
(

aṽ−1
2j−1 1

λ 0

)
W2j−1 =

(
av−1

2j−2 1

λ + a 0

)
. (4.6)

Consider now the end points. For M1 let v0 → ∞, hence

M1 =
(

aṽ−1
1 1

λ 0

)(
0 1

λ + a 0

)
=

(
λ + a aṽ−1

1

0 λ

)
. (4.7)

For the last point in the even staircase special consideration must be given to MM , let
ṽN−1 → −∞, hence

MM =
(

0 1
λ 0

) (
av−1

N−2 1

λ + a 0

)
=

(
λ + a 0

λav−1
N−2 λ

)
. (4.8)

It is easily verified, by a straightforward calculation, that the mapping that follows from an
initial values staircase with an even number of points (3.4) follows from the Zakharov–Shabat
equation (4.2), along with equations (4.5), (4.6), (4.7) and (4.8). The L-matrices (4.5) are
the same as those of the mappings which arise from the lattice KdV through a periodic
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Figure 4. Additional Lax matrices for the mappings arising from an odd initial value staircase are
derived by a consideration of the compatibility of the two paths shown.

initial value problem, see [22]. It should also be noted that no commuting is required in the
derivation of the Lax matrices, or in the use of the compatibility equation (4.2) to derive the
mapping.

For the mappings that follow from an initial value staircase with an odd number of points,
extra consideration must be given to the last part of the staircase. Consider the compatibility
of the paths shown in figure 4. The anticlockwise path a2M → ã2M−1 → ã2M is effected by

M̃2M−1L̃
−1
2M−1.

The clockwise path a2M → ã2M+1 → ã2M is effected by

L̃
−1
2MM2M.

Equating the anticlockwise and clockwise paths gives

Ã2M−1QÃ
−1
2MA2MP−1Ã

−1
2M−1 = Ã2M+1P

−1Ã
−1
2MA2MQA

−1
2M+1. (4.9)

This implies the discrete-time Zakharov–Shabat style system

Ṽ2M−1MM = NMV2M−1 (4.10)

where using the definitions (3.3), the lattice KdV (2.1), and letting ṽN−1 → −∞,

NM =
(

λ + a 0

(λ + a)aṽ−1
2M−1 λ

)
. (4.11)

It is easily verified, by a straightforward calculation, that the mapping that follows from an
initial values staircase with an odd number of points (3.6) follows from the Zakharov–Shabat
equations (4.2) and (4.10), along with equations (4.5), (4.6), (4.7), and (4.11). Again, it should
also be noted that no commuting is required in the derivation of the Lax matrices, or in the use
of the compatibility equations (4.2) and (4.10) to derive the mapping.
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5. Invariants

The derivation of the invariants for the discrete-time evolution given by the mappings presented
in sections 3.1 and 3.2 will be given in this section, using the Lax matrices derived in section 4.
As before, we first consider the mapping that follows from an initial value staircase with an
even number of points (3.4), before turning to the mapping that follows from one with an odd
number.

Consider the transfer matrix, T (λ), for the even case (which is obtained by gluing the
elementary translation matrices Lj along a line connecting the sites 1 and lE , where lE is the
number of degrees-of-freedom)

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
:=

←−
lE∏

n=1

Ln(λ). (5.1)

Now consider the time update of this transfer matrix,

T̃ (λ) =
←−
lE∏

n=1

L̃n(λ) =
←−
lE∏

n=1

Mn+1Ln(λ)M−1
n = MlE+1T (λ)M−1

1 . (5.2)

Rewriting so that all of the time-updated variables occur on the left-hand side of the equation
and all of the non-updated variables occur on the right-hand side of the equation gives

T̃ (λ)M1 = MlE+1T (λ)

and calculating explicitly reveals that

T̃ (λ)M1 =
(

(λ + a)Ã Ãaṽ−1
1 + λB̃

(λ + a)C̃ C̃aṽ−1
1 + λD̃

)
(5.3)

MlE+1T (λ) =
(

(λ + a)A (λ + a)B

λav−1
2lE

A + λC λav−1
2lE

B + λD

)
. (5.4)

Therefore Ã(λ) = A(λ), i.e., A(λ) is invariant under the discrete-time evolution given by the
mapping (3.4).

The Lax matrices (4.5) may be written in the form

Lj = ϒj + λ�j

where

ϒj =
(

v2j v2j−1 + a v2j

0 0

)
�j =

(
1 0

v2j−1 1

)
.

The matrices ϒj and �j have the properties that, for m > n,
←−
m∏

j=n

ϒj =
 ←−

m∏
j=n+1

(v2j v2j−1 + a)

 ϒn

←−
m∏

j=n

�j =

 1 0
m∑

j=n

v2j−1 1

 .

Hence the transfer matrix (5.1) has the gradation

T (λ) =
(

λlE + λlE−1AlE−1 + · · · + A0 λlE−1BlE−1 + λlE−2BlE−2 + · · · + B0

λlE ClE + λlE−1ClE−1 + · · · + λC1 λlE + λlE−1DlE−1 + · · · + λD1

)
. (5.5)
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More specifically

A0 =
←−
lE∏

j=1

(v2j v2j−1 + a)

A1 =
lE∑

n=1


←−
lE∏

j=1
j �=n

(v2j v2j−1 + a) +

←−
lE∏

j=n+2

(v2j v2j−1 + a)v2n+2v2n−1

←−
n−1∏
j=1

(v2j v2j−1 + a)


...

AlE−1 =
lE∑

n=1

v2n

 n∑
j=1

v2j−1

 + a



(5.6)

and

C1 = v2lE−1

←−
lE−1∏
j=1

(v2j v2j−1 + a)

...

ClE−1 =
lE−1∑
n=1

(
lE∑

i=n+1

v2i−1

) v2n

 n∑
j=1

v2j−1

 + a


ClE =

lE∑
j=1

v2j−1.

(5.7)

Hence, the coefficients of λ0, λ, λ2, . . . , λlE−1 in A(λ) give the lE nontrivial invariants of
the discrete-time evolution. Their commutativity (in the quantum case) will be proven in
section 7.

Consider now the transfer matrix for the odd case (which has lO = M − 1 degrees-of-
freedom, where 2M + 1 is the number of points of the initial value staircase on the lattice). For
later convenience the transfer matrix and its entries, for the mappings which originate from an
initial value staircase with an odd number of points, will be given in the San Serif typeface,

T(λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
:= V2lO +1

←−
lO∏

n=1

Ln(λ). (5.8)

Now consider the time update of this transfer matrix,

T̃(λ) = Ṽ2lO +1

←−
lO∏

n=1

L̃n(λ) = NlO +1V2lO +1M
−1
lO+1

←−
lO∏

n=1

Mn+1Ln(λ)M−1
n

= NlO +1T(λ)M−1
1 . (5.9)

As before, write

T̃(λ)M1 = NlO +1T(λ)

calculating the left-hand side explicitly is obviously the same as (5.3), the right-hand side is
now

NlO +1T(λ) =
(

(λ + a)A (λ + a)B

(λ + a)aṽ−1
2lO +1A + λC (λ + a)aṽ−1

2lO +1B + λD

)
. (5.10)
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Therefore Ã(λ) = A(λ), i.e., A(λ) is invariant under the discrete-time evolution given by the
mapping (3.6).

The transfer matrix (5.8) has the grading

T(λ) =
(

λlO AlO + λlO−1AlO−1 + · · · + A0 λlO + λlO−1BlO−1 + · · · + B0

(λ + a)
(
λlO + λlO−1ClO−1 + · · · + C0

)
(λ + a)

(
λlO−1DlO−1 + · · · + D0

)) , (5.11)

where, more specifically,

A0 = v2lO +1

←−
lO∏

j=1

(v2j v2j−1 + a)

A1 = v2lO +1

lO∑
n=1


←−
lO∏

j=1
j �=n

(v2j v2j−1 + a) +

←−
lO∏

j=n+2

(v2j v2j−1 + a)v2n+2v2n−1

←−
n−1∏
j=1

(v2j v2j−1 + a)



+ v2lO−1

←−
lO−1∏
j=1

(v2j v2j−1 + a)

...

AlO−1 = v2lO +1

lO∑
n=1

v2n

 n∑
j=1

v2j−1

 + a

 +
lO−1∑
n=1

(
lO∑

i=n+1

v2i−1

) v2n

 n∑
j=1

v2j−1

 + a



AlO =
lO +1∑
j=1

v2j−1 (5.12)

and

C0 =
←−
lO∏

j=1

(v2j v2j−1 + a)

C1 =
lO∑

n=1


←−
lO∏

j=1
j �=n

(v2j v2j−1 + a) +

←−
lO∏

j=n+2

(v2j v2j−1 + a)v2n+2v2n−1

←−
n−1∏
j=1

(v2j v2j−1 + a)


...

ClO−1 =
lO∑

n=1

v2n

 n∑
j=1

v2j−1

 + a

 .

(5.13)

The coefficient of λlO in A(λ) is the Casimir (3.7). The coefficients of λ0, λ, λ2, . . . , λlO−1

in A(λ) give the lO nontrivial invariants of the discrete-time evolution. Their commutativity
(in the quantum case) will be proven in section 7.
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6. Exact solution of the discrete operator equations of motion

It is generally impossible to explicitly solve the quantum-mechanical Heisenberg equations of
motion. The long-standing exception to this being the harmonic oscillator. In the papers
[3–5] C M Bender and G V Dunne considered the exact solution of quantum mechanical
Heisenberg equations of motion for one degree-of-freedom systems (leaving higher-
dimensional considerations as an open problem). They presented a method of constructing
an implicit solution (which was demonstrated for systems such as the anharmonic oscillator,
H = 1

2p2 + 1
4q4), and for certain systems they presented explicit solutions in closed form.

Indeed, in [3] they showed that for Euler Hamiltonians (i.e., Hamiltonians that are solely
functions of qp, for example, H = qp) the operator equations of motion can always be solved
explicitly in closed form.

In this section the difference equations defined on the associative algebra A given earlier
are explicitly solved as equations of motion. These are the first examples of explicitly solved
discrete operator equations of motion, and also the first examples of explicitly solved operator
equations of motion for systems with more than one degree-of-freedom. (The quantum case
is given by a particular choice of commutation relations, see section 7.) The solution of the
operator equations of motion is accomplished by employing the Lax matrix structure to pass
to a new set of coordinates (the {Ci} and {Ai} of the transfer matrix for the ‘even’ mappings
and the {Ci} and {Ai} for the ‘odd’ mappings) in terms of which the evolution linearizes. After
evolving linearly, the original {vi} variables at any time-level may be reconstructed in terms
of the {Ci} and {Ai} for the ‘even’ mappings, or the {Ci} and {Ai} for the ‘odd’ mappings, at
that particular time-level.

6.1. Linear Ci evolution. Even case

Equations (5.3) and (5.4) show that

(λ + a)
C̃

λ
= av−1

2lE
A + C. (6.1)

Letting λ → 0 reveals

v−1
2lE

= C̃1A
−1
0 . (6.2)

Therefore equation (6.1) gives

C = (λ + a)
C̃

λ
− aC̃1A

−1
0 A (6.3)

and, employing the gradation (5.5), one obtains,

C1 = C̃1
(
1 − aA−1

0 A1
)

+ aC̃2

C2 = −aC̃1A
−1
0 A2 + C̃2 + aC̃3

C3 = −aC̃1A
−1
0 A3 + C̃3 + aC̃4

...

ClE−1 = −aC̃1A
−1
0 AlE−1 + C̃lE−1 + aC̃lE

ClE = −aC̃1A
−1
0 + C̃lE .

(6.4)
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This autonomous linear evolution may be rewritten in the matricial form(
C̃1, C̃2, C̃3, . . . , C̃lE

) = (
C1, C2, C3, . . . , ClE

)

×



1 − aA−1
0 A1 −aA−1

0 A2 −aA−1
0 A3 . . . −aA−1

0

a 1 0 0

0 a 1 0

0 0 a 0
...

...

0 0 0 . . . 1



−1

. (6.5)

The lE × lE matrix on the right of (6.5) is invariant under time-updates (as it is only a
function of the invariants {Ai}). It should also be remembered that the invariants {Ai} commute
with each other. Rewriting (6.5) as

C̃ = CM (6.6)

it is easily seen that at time n,

C(n) = CMn, (6.7)

giving the {Ci} variables at time n solely in terms of {Ai} and {Ci} at the original time. This
evolution for the specific case of lE = 1 appears in section 8.

In the classical case the lE × lE matrix on the right of (6.5) is generically diagonalizable.
This allows one to speak of an interpolating continuous-time flow. In cases above one
degree-of-freedom it is not clear whether such an interpretation can be applied to the general
(associative algebra) case, where the invariants are not given by numerical values, but are,
rather, operators. However, it does seem possible to give this interpretation to the quantum
case with one degree-of-freedom (see section 8).

6.2. Linear Ci evolution. Odd case

Equations (5.3) and (5.10) show that

(λ + a)C̃ = (λ + a)aṽ−1
2lO +1A + λC. (6.8)

Setting λ = 0 reveals

v−1
2l0+1 = C̃0A−1

0 . (6.9)

Therefore equation (6.8) gives

λC = (λ + a)C̃ − (λ + a)aC̃0A−1
0 A (6.10)

and, employing the gradation (5.11), one obtains,

C0 = C̃0
(
1 − aA−1

0 A1
)

+ aC̃1

C1 = −aC̃0A−1
0 A2 + C̃1 + aC̃2

C2 = −aC̃0A−1
0 A3 + C̃2 + aC̃3

...

ClO−1 = −aC̃0A−1
0 AlO + C̃lO−1 + a.

(6.11)
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This autonomous linear evolution may be rewritten in the matricial form(
C̃0, C̃1, . . . , C̃lO−1, 1

) = (
C0, C1, . . . , ClO−1, 1

)

×



1 − aA−1
0 A1 −aA−1

0 A2 . . . −aA−1
0 AlO 0

a 1 0 0

0 a 0 0

0 0 0 0
...

...

0 0 . . . a 1



−1

. (6.12)

The lO × lO matrix on the right of (6.12) is invariant under time-updates (as it is only a
function of the invariants {Ai}). It should also be remembered that the invariants {Ai} commute
with each other. Rewriting (6.12) as

C̃ = CM (6.13)

it is easily seen that at time n,

C(n) = CMn, (6.14)

giving the {Ci} variables at time n solely in terms of {Ai} and {Ci} at the original time.This
evolution for the specific case of lO = 1 appears in section 9.

Classically the lO × lO matrix on the right of (6.12) is generically diagonalizable. The
comments at the end of the previous section also apply here.

6.3. Reconstruction

In this section the reconstruction of the original {vi} variables in terms of the {Ci} and
{Ai} variables is considered (or in terms of the {Ci} and {Ai} variables in the ‘odd’ case).
It is expedient to construct an efficient algorithmic method for this reconstruction. In
[17] reconstruction of the {vi} dynamical variables in terms of the Sklyanin coordinates is
accomplished via a ‘spatial’ evolution along one period of the ‘spatial’ (equal time) chain. For
the mappings considered in this paper, which originate from a finite, rather than a periodic,
initial value problem, this is not a viable possibility. Instead, reconstruction is achieved by
‘peeling away’ the transfer matrix, in a manner which will be made clear below.

As the ‘peeling away’ of the transfer matrix proceeds, we are gradually left with transfer
matrices corresponding to mappings with fewer and fewer ‘degrees-of-freedom’. For this
reason it is necessary to introduce an addition to the notation that has been used so far in this
paper, so that the number of degrees-of-freedom of the transfer matrix and its entries may be
easily seen. The addition to the notation is an additional subscript, a semicolon followed by
the number of degrees of freedom, that is,

T;lE (λ) =
(

A;lE (λ) B;lE (λ)

C;lE (λ) D;lE (λ)

)
:=

←−
lE∏

n=1

Ln(λ)

where, for instance, A;lE (λ) = λlE + λlE−1AlE−1;lE + · · · + A0;lE , and similarly

T;lO (λ) =
(

A;lO (λ) B;lO (λ)

C;lO (λ) D;lO (λ)

)
:= V2lO +1

←−
lO∏

n=1

Ln(λ).
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Along with the definition of the L-matrix in terms of V -matrices, equation (4.5), it is seen
that V −1

2n T;n = T;n−1 and V −1
2n−1T;n−1 = T;n−1. Hence,(

0 λ−1

1 −λ−1v2n

) (
A;n B;n
C;n D;n

)
=

(
λ−1C;n λ−1D;n

A;n − λ−1v2nC;n B;n − λ−1v2nD;n

)
=

(
A;n−1 B;n−1

C;n−1 D;n−1

)
(6.15)

and, similarly,(
(λ + a)−1C;n−1 (λ + a)−1D;n−1

A;n−1 − (λ + a)−1v2n−1C;n−1 B;n−1 − (λ + a)−1v2n−1D;n−1

)
=

(
A;n−1 B;n−1

C;n−1 D;n−1

)
.

(6.16)

Bearing in mind the gradations given in equations (5.5) and (5.11), one obtains

v2n = −aA;n(−a)(C;n(−a))−1 (6.17)

and

v2n−1 = A0;n−1C−1
0;n−1. (6.18)

Obviously it remains to express {Ci;n} and {Ai;n}, and {Ci;n} and {Ai;n} in terms of
{
Ci;lE

}
and{

Ai;lE
}

in the ‘even’ case and in terms of
{
Ci;lO

}
and

{
Ai;lO

}
in the ‘odd’ case.

Again noting the gradations given in equations (5.5) and (5.11), and considering the A;n−1

entry of (6.15), one obtains

Cj ;n = Aj−1;n−1 1 � j � n. (6.19)

Considering the C;n−1 entry of (6.15) one obtains

A0;n − v2nC1;n = aC0;n−1

Aj−1;n − v2nCj ;n = Cj−2;n−1 + aCj−1;n−1 1 < j < n

An−1;n − v2nCn;n = Cn−2;n−1 + a.

(6.20)

On considering the A;n−1 entry of (6.16), one obtains

Cj ;n−1 = Aj ;n−1 0 � j � n − 2. (6.21)

Considering the C;n−1 entry of (6.16) one obtains

A0;n−1 − v2n−1C0;n−1 = 0

Aj ;n−1 − v2n−1Cj ;n−1 = Cj ;n−1 0 < j < n − 1

An−1;n−1 − v2n−1 = Cn−1;n−1.

(6.22)

The reconstruction goes in essentially the same way for the ‘even’ and the ‘odd’ mappings.
Equations (6.19) and (6.20) and equations (6.21) and (6.22) are put into a matricial form. The
only difference being that if we are considering an ‘even’ mapping with lE degrees-of-freedom,
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the matricial equation is in terms of 2lE-dimensional vectors and 2lE × 2lE matrices, and if
we are considering an ‘odd’ mapping with lO degrees-of-freedom the matricial equation is in
terms of 2(lO + 1)-dimensional vectors and 2(lO + 1) × 2(lO + 1) matrices.

It is easily seen that the matricial equations are



1 0 0 0 0 0 0
∣∣∣ 0 0 0 0 0 0 0

0 1 0 0 0 0 0
∣∣∣ 0 0 0 0 0 0 0∣∣∣

...
. . .

∣∣∣ ...
...∣∣∣

0 0 0 0 0 1 0
∣∣∣ 0 0 0 0 0 0 0

0 0 0 0 0 0 1
∣∣∣ 0 0 0 0 0 0 0

0 0 0 0 0 0 0
∣∣∣ a 0 0 0 0 0 0

0 0 0 0 0 0 0
∣∣∣ 1 a 0 0 0 0 0∣∣∣

...
...

∣∣∣ . . .
...∣∣∣

0 0 0 0 0 0 0
∣∣∣ 0 0 0 0 1 a 0

0 0 0 0 0 0 0
∣∣∣ 0 0 0 0 0 1 a





A0;n−1

A1;n−1

...

An−1;n−1

0

...

0

C0;n−1

C1;n−1

...

Cn−2;n−1

1

0

...



=



0 0 0 0 0 0 0
∣∣∣ 1 0 0 0 0 0 0

0 0 0 0 0 0 0
∣∣∣ 0 1 0 0 0 0 0∣∣∣

...

∣∣∣ ...
. . .

...∣∣∣
0 0 0 0 0 0 0

∣∣∣ 0 0 0 0 0 1 0

0 0 0 0 0 0 0
∣∣∣ 0 0 0 0 0 0 1

1 0 0 0 0 0 0
∣∣∣ −v2n 0 0 0 0 0 0

0 1 0 0 0 0 0
∣∣∣ 0 −v2n 0 0 0 0 0∣∣∣

...
. . .

...

∣∣∣ . . .
...∣∣∣

0 0 0 0 0 1 0
∣∣∣ 0 0 0 0 0 −v2n 0

0 0 0 0 0 0 1
∣∣∣ 0 0 0 0 0 0 −v2n





A0;n
A1;n

...

An−1;n
1

0

...

C1;n
C2;n

...

Cn−1;n
Cn;n

0

...


(6.23)
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

1 0 0 0 0 0 0
∣∣∣ 0 0 0 0 0 0 0

0 1 0 0 0 0 0
∣∣∣ 0 0 0 0 0 0 0∣∣∣

...
. . .

∣∣∣ ...
...∣∣∣

0 0 0 0 0 1 0
∣∣∣ 0 0 0 0 0 0 0

0 0 0 0 0 0 1
∣∣∣ 0 0 0 0 0 0 0

0 0 0 0 0 0 0
∣∣∣ 0 0 0 0 0 0 1

0 0 0 0 0 0 0
∣∣∣ 1 0 0 0 0 0 0∣∣∣

...
...

∣∣∣ . . .
...∣∣∣

0 0 0 0 0 0 0
∣∣∣ 0 0 0 0 1 0 0

0 0 0 0 0 0 0
∣∣∣ 0 0 0 0 0 1 0





A0;n−1

A1;n−1

...

An−2;n−1

1

0

...

C1;n−1

C2;n−1

...

Cn−1;n−1

0

...

0



=



0 0 0 0 0 0 0
∣∣∣ 1 0 0 0 0 0 0

0 0 0 0 0 0 0
∣∣∣ 0 1 0 0 0 0 0∣∣∣

...

∣∣∣ ...
. . .

...∣∣∣
0 0 0 0 0 0 0

∣∣∣ 0 0 0 0 0 1 0

0 0 0 0 0 0 0
∣∣∣ 0 0 0 0 0 0 1

1 0 0 0 0 0 0
∣∣∣ −v2n−1 0 0 0 0 0 0

0 1 0 0 0 0 0
∣∣∣ 0 −v2n−1 0 0 0 0 0∣∣∣

...
. . .

...

∣∣∣ . . .
...∣∣∣

0 0 0 0 0 1 0
∣∣∣ 0 0 0 0 0 −v2n−1 0

0 0 0 0 0 0 1
∣∣∣ 0 0 0 0 0 0 −v2n−1





A0;n−1

A1;n−1

...

An−2;n−1

An−1;n−1

0

...

C0;n−1

C1;n−1

...

Cn−2;n−1

1

0

...



.

(6.24)

To take the specific example of an ‘even’ mapping, reconstruction would proceed as
follows. One immediately has v2lE in terms of

{
Ai;lE

}
and

{
Ci;lE

}
from equation (6.17). Now,

from equation (6.18), v2lE−1 is expressed in terms of A0;lE−1 and C0;lE−1 . Using equation (6.23),
in conjunction with v2lE in terms of

{
Ai;lE

}
and

{
Ci;lE

}
, gives

{
Ai;lE−1

}
and

{
Ci;lE−1

}
in terms

of
{
Ai;lE

}
and

{
Ci;lE

}
. Therefore v2lE−1 may be expressed in terms of

{
Ai;lE

}
and

{
Ci;lE

}
.

Equation (6.17) also gives v2lE−2 in terms of
{
Ai;lE−1

}
and

{
Ci;lE−1

}
. Using equation (6.24),
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in conjunction with v2lE−1 in terms of
{
Ai;lE−1

}
and

{
Ci;lE−1

}
, gives

{
Ai;lE−1

}
and

{
Ci;lE−1

}
in

terms of
{
Ai;lE−1

}
and

{
Ci;lE−1

}
and, therefore (as we already have

{
Ai;lE−1

}
and

{
Ci;lE−1

}
in

terms of
{
Ai;lE

}
and

{
Ci;lE

}
), gives v2lE−2 in terms of

{
Ai;lE

}
and

{
Ci;lE

}
. The procedure

continues until reconstruction of the original {vi} is completed. The ‘odd’ case is completely
analogous.

7. Quantum mappings and the Yang–Baxter structure

The commutation relation

[vj , vj ′ ] = G(δj,j ′+1 − δj+1,j ′), (7.1)

where G is an arbitrary time-independent member of the algebra A, is preserved under an
evolution by the even map (3.4) or the odd map (3.6). Specifying the commutation relation
(7.1) allows us to consider the maps given previously as bona fide dynamical systems. With
this commutation relation we see that the even map, (3.4), has lE := M − 1 degrees-of-
freedom, and the odd map, (3.6), has lO := M − 1 degrees-of-freedom as ν, of equation (3.7),
is now a Casimir.

Without specifying commutation relations for the dynamical variables {vi} it was possible
to solve the mappings (as discrete equations of motion) for all (discrete) times. This result has
echoes of an observation of [8] that the integrability, in the sense of higher-dimensional
consistency, of partial difference equations defined around an elementary plaquette (as
discussed in [27], and comprehensively in [1]), when the field variables belong to an associative
algebra, is independent of the commutation relations between the field variables.

Integrability of dynamical systems is usually defined in terms of a sufficient number of
commuting invariants of the evolution, which is usually proven using a Yang–Baxter structure.
Without specifying commutation relations between G ∈ A and the dynamical variables it is
not possible to prove commutativity of the invariants of the discrete-time evolution. In this
section we consider G = hI , where h = ih̄ ∈ iR and I is the unit of A (and so commutes
with all members of A). Hence

[vj , vj ′ ] = h(δj,j ′+1 − δj+1,j ′). (7.2)

This is the commutation relation specified for the quantum mappings of KdV type given
in [22, 11]. With this commutation relation {v2j+1}j∈Z and {v2i}i∈Z form a complete set of
complementary quantum observables.

In this section it will be shown that the quantum maps (3.4) and (3.6) with (7.2) are
integrable (in that all of the invariants of a particular map commute pairwise). And, therefore,
in the classical limit this gives a new family of classical integrable maps (in the LAV sense,
see [33, 32, 10]). More specifically, the non-ultralocal Yang–Baxter structure of the L- and
V -matrices belonging to the mappings will be presented. This Yang–Baxter structure allows
a concise proof of the pairwise commutativity of the invariants of the discrete-time evolution
for any number of degrees-of-freedom. (And hence, in the classical limit, it gives a concise
proof of the involutivity of the invariants with respect to the Poisson structure.)

The Yang–Baxter structure for the mapping that follows from an initial value staircase
with an even number of points, (3.4), is already known; as the L-matrices are the same as those
in the periodic case the Yang–Baxter structure is the same. The only nontrivial commutation
relations between the operators Ln(λ) are those on the same and nearest-neighbour sites,
namely as follows

R+
12Ln,1Ln,2 = Ln,2Ln,1R

−
12 (7.3)

Ln+1,1S
+
12Ln,2 = Ln,2Ln+1,1 (7.4)
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Ln,1Lm,2 = Lm,2Ln,1 |n − m| � 2 (7.5)

where Ln(λ) is the L operator at the nth site and Ln,j denotes Ln(λ) acting nontrivially only
on the j th factor of the tensor product,

Ln,j := 1 ⊗ 1 ⊗ · · · ⊗ Ln(λj )︸ ︷︷ ︸
j th place

⊗ · · · ⊗ 1.

The operators R±
jk := R±

jk(λj , λk) act nontrivially only on the j th and kth factors of the tensor
product. The realization of the R and S matrices is

R+
12 = R−

12 − S+
12 + S−

12

R−
12 = 1 ⊗ 1 + h

P12

λ1 − λ2

S+
12 = 1 ⊗ 1 − h

λ2
F ⊗ E S−

12 = S+
21

(7.6)

where the permutation operator P12 and the matrices E and F are given by

P12 =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 E =
(

0 1

0 0

)
F =

(
0 0

1 0

)
. (7.7)

The commutation relations encapsulated within (7.3) are given in appendix A. Equations (7.3),
(7.4) and (7.5) lead to

R+
12T1T2 = T2T1R

−
12 (7.8)

where T is as defined in (5.1). From which it follows (see appendix A) that the invariants (i.e.,
the coefficients of different powers of λ in A(λ)) commute.

For the odd mappings, (3.6), it is necessary to consider the Yang–Baxter structure for the
V -matrices. This Yang–Baxter structure was alluded to in [22], but not given explicitly. Its
explicit realization for the mappings which arise from the lattice KdV will now be presented.
The only nontrivial commutation relations between the operators Vn(λ) are those on the same
and nearest-neighbour sites, namely as follows,

R+
12(n)Vn,1Vn,2 = Vn,2Vn,1R

−
12 (7.9)

Vn+1,1S
+
12(n)Vn,2 = Vn,2Vn+1,1 (7.10)

Vn,1Vm,2 = Vm,2Vn,1 |n − m| � 2 (7.11)

where Vn(λ) is the V operator at the nth site and Vn,j denotes Vn(λ) acting nontrivially only
on the j th factor of the tensor product. The realization of the R and S matrices is

R+
12(n) = R−

12 − S+
12(n) + S−

12(n)

R−
12 = 1 ⊗ 1 + h

P12

λ1 − λ2

S+
12(2j − 1) = 1 ⊗ 1 − h

λ2 + a
F ⊗ E

S+
12(2j) = 1 ⊗ 1 − h

λ2
F ⊗ E S−

12(n) = S+
21(n)

(7.12)

where j ∈ Z, n ∈ Z, the permutation operator P12 and the matrices E and F are as given in
equation (7.7). It can be shown that

R−
12S

−
12(n) = S+

12(n)R+
12(n).
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Of course R+
12(2j) = R+

12 and S+
12(2j) = S+

12. The commutation relations encapsulated within
(7.9) for odd n are given in appendix B. Equations (7.9), (7.10) and (7.11) lead to

R+
12(2j − 1)T1T2 = T2T1R

−
12 (7.13)

where T is as defined in (5.8). From which it follows (see appendix B) that the invariants
(i.e., the coefficients of different powers of λ in A(λ)) also commute in the case of the
mappings (3.6).

8. Specific example of the ‘even’ mapping

When the number of degrees-of-freedom lE = 1, the mapping (3.4) becomes

ṽ1 = v1 + av−1
2 ṽ2 = v2 − aṽ−1

1 (8.1)

and the commutation relation between v1 and v2 reads

[v1, v2] = ih̄. (8.2)

In the classical limit this map was considered in [16] where the conversion to action-
angle variables was performed, and the modified (or interpolating) Hamiltonian was given.
However, here we shall continue to use the machinery of the present paper, and also maintain
the commutation relation (8.2) (i.e., remain in a quantum context).

In the one degree-of-freedom case, equation (6.5) becomes

C̃1 = C1
(
1 − aA−1

0

)−1
(8.3)

which implies that C1 at time n ∈ Z, C1(n), is

C1(n) = C1
(
1 − aA−1

0

)−n
. (8.4)

To complete the picture, we want to express v1 and v2 at any time in terms of v1 and v2

at the original time. The transfer matrix in the one degree-of-freedom case is simply the first
Lax matrix,

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
:=

(
λ + v2v1 + a v2

λv1 λ

)
(8.5)

from which we see that the invariant A1 = v2v1 + a, and C1 = v1. Therefore

v1(n) = v1(1 + a(v2v1)
−1)n. (8.6)

Now, as v2v1 is invariant under time-updates, v2(n) follows immediately. However, continuing
to use the machinery of the previous sections we see that equation (6.17) gives

v2 = −aA(−a)(C(−a))−1

= (A0 − a)(C1)
−1. (8.7)

Hence, along with equation (8.4) it is seen that

v2(n) = (A0 − a)
(
1 − aA−1

0

)n
(C1)

−1

= (v2v1(v2v1 + a)−1)nv2. (8.8)

Therefore the discrete operator equations of motion (8.1) have been solved exactly for all
integer times n. One may also consider formulae (8.6) and (8.8) as interpolating between the
integer time-steps.

Hence it is seen that a function of the invariant v2v1 is an interpolating (or modified)
Hamiltonian of the quantum mapping. As a quantum mechanical Hamiltonian H = v2v1 was
considered by Berry and Keating in [6] (see also [7]). Their purpose was to present evidence
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that the eigenvalues (or energy levels), En, of the formally Hermitian quantum operator
H = v1v2 − i h̄

2 are the imaginary part of the complex zeros of Riemann’s zeta function, i.e.,
that

ζ
(

1
2 + iEn

) = 0.

The semiclassical expression derived for the statistics of En gave tantalizing insights into a
possible connection with the zeta function, ζ(s). However, there are, as is freely admitted in
the work, many difficulties and problems that are not merely technical, such as the space on
which v1v2 acts is not known (different possibilities are discussed for, somehow, ‘sewing up’
the phase space), and there are many analytical possibilities, for instance different boundary
conditions, etc (which are considered, but it is basically concluded that there is no clear route
to take).

Many of the same problems considered in [6] (such as the determination of what the
correct space is for v1v2 to act on) will have to be addressed in a more rigorous consideration
of the quantum mappings considered in this paper.

9. Specific example of the ‘odd’ mappings

When the number of degrees-of-freedom lO = 1, the mapping (3.6) becomes

ṽ1 = v1 + av−1
2 ṽ3 = v3 − av−1

2 ṽ2 = v2 − aṽ−1
1 + aṽ−1

3 . (9.1)

The Casimir of this algebra (3.7), with the commutation relations (7.2), is, in the one degree-
of-freedom case,

ν = A1;1 = v1 + v3. (9.2)

For convenience, v3 will be left in some of the equations that follow; however, it should be
born in mind that the meaning of v3 is, actually, ν − v1.

With one degree-of-freedom equation (6.12) becomes

(C̃0, 1) = (C0, 1)

(
1 − aA−1

0 A1 0

a 1

)−1

= (C0, 1)

(
A0A(−a)−1 0

−aA0A(−a)−1 1

)
. (9.3)

which implies that C0 at time n ∈ Z, C0(n), is

C0(n) = C0(A0A(−a)−1)n − a

n∑
j=1

(A0A(−a)−1)j . (9.4)

To complete the picture, we want to express v1 = A1 − v3 and v2 at any time-level in
terms of v1 and v2 at the original time-level.

From equation (6.18),

v3(n) = A0C0(n)−1 (9.5)

equation (6.17) gives

v2 = −aA;1(−a)(C;1(−a))−1 (9.6)

and equation (6.24) reads
A0;1

1

0

C1;1

 =


0 0 1 0

0 0 0 1

1 0 −v3 0

0 1 0 −v3




A0

A1

C0

1

 . (9.7)
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Hence

A;1(−a) = C0 − a C;1(−a) = −a(A1 − v3).

Hence

v2(n) = (C0(n) − a)(A1 − A0C0(n)−1)−1. (9.8)

Therefore, in conjunction with (9.4), equations (9.5) and (9.8) give v3(n) (and, so, v1(n)) and
v2(n) in terms of A0, A1 = ν and C0 at the initial time.

10. Summary

A new type of initial boundary condition for lattice equations that relate values of a field
variable around a quadrilateral was proposed. It was applied to the lattice KdV equation,
which resulted in two new families of integrable mappings. The solution of these mappings
(discrete equations of motion) can be found over any discrete time interval, even in the quantum
case. These mappings are, hence, examples of multi-dimensional operator equations of motion
that can be solved for all time (in the spirit of the work [3, 4] on the one degree-of-freedom
case).

The field variables of the lattice KdV took values in an associative algebra from the start.
This puts the present work in the context of other recent work in integrable systems such as
[19, 28] where the structure of integrable PDEs was extended to the domain of associative
algebras, [2] where Painlev é equations were defined on an associative algebra, and [8] where
the higher-dimensional consistency (consistency around a cube) property was investigated for
integrable partial difference equations defined on an associative algebra. One may speculate
that developments in this area may lead towards new approaches to the quantization process.

Acknowledgments

FWN and HWC would like to thank V Papageorgiou for discussions at the early stages of this
research.

Appendix A. RTT commutation relations

Consider a matrix

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
.

In this section we give the commutation relations for entries of a matrix of this form, which
obeys the Yang–Baxter relation

R+
12T1T2 = T2T1R

−
12

where the R-matrices are the lattice KdV realization, as given in equation (7.6).
Let us use the convention that if we work with different values of the spectral parameter

λ1, λ2, . . . , the corresponding values of the operators A(λi), . . . , D(λi) will be denoted by
Ai, . . . ,Di , (i = 1, 2, . . .). Using this shorthand notation we have the following list of
commutation relations for the entries of T (λ),

λ̂12A1A2 = λ̂12A2A1

λ̂12A1B2 = λ12B2A1 + hA2B1
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λ̂12B1A2 = hB2A1 + λ12A2B1

λ̂12B1B2 = λ̂12B2B1

λ12A1C2 + h
λ2

λ1
C1A2 = λ̂12C2A1

λ12A1D2 + h
λ2

λ1
C1B2 = λ12D2A1 + hC2B1

λ12B1C2 + h
λ2

λ1
D1A2 = hD2A1 + λ12C2B1

λ12B1D2 + h
λ2

λ1
D1B2 = λ̂12D2B1

h
λ1

λ2
A1C2 + λ12C1A2 = λ̂12A2C1

h
λ1

λ2
A1D2 + λ12C1B2 = λ12B2C1 + hA2D1

h
λ1

λ2
B1C2 + λ12D1A2 = hB2C1 + λ12A2D1

h
λ1

λ2
B1D2 + λ12D1B2 = λ̂12B2D1

λ̂12C1C2 = λ̂12C2C1

λ̂12C1D2 = λ12D2C1 + hC2D1

λ̂12D1C2 = hD2C1 + λ12C2D1

λ̂12D1D2 = λ̂12D2D1,

where we have also introduced, for these appendices only, the notation λ̂ij ≡ λi − λj + h,

λij ≡ λi − λj .

Appendix B. R(2j − 1)TT commutation relations

Consider a matrix

T (λ) =
(

A(λ) B(λ)

C(λ) D(λ)

)
.

In this section we give the commutation relations for entries of a matrix of this form, which
obeys the Yang–Baxter relation

R+
12(2j − 1)T1T2 = T2T1R

−
12

where the R-matrices are the lattice KdV realization, as given in equation (7.12).
Let us use the convention that if we work with different values of the spectral parameter

λ1, λ2, . . . , the corresponding values of the operators A(λi), . . . , D(λi) will be denoted by
Ai, . . . ,Di , (i = 1, 2, . . .). Using this shorthand notation we have the following list of
commutation relations for the entries of T (λ),

λ̂12A1A2 = λ̂12A2A1

λ̂12A1B2 = λ12B2A1 + hA2B1

λ̂12B1A2 = hB2A1 + λ12A2B1

λ̂12B1B2 = λ̂12B2B1
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λ12A1C2 + h
λ2 + a

λ1 + a
C1A2 = λ̂12C2A1

λ12A1D2 + h
λ2 + a

λ1 + a
C1B2 = λ12D2A1 + hC2B1

λ12B1C2 + h
λ2 + a

λ1 + a
D1A2 = hD2A1 + λ12C2B1

λ12B1D2 + h
λ2 + a

λ1 + a
D1B2 = λ̂12D2B1

h
λ1 + a

λ2 + a
A1C2 + λ12C1A2 = λ̂12A2C1

h
λ1 + a

λ2 + a
A1D2 + λ12C1B2 = λ12B2C1 + hA2D1

h
λ1 + a

λ2 + a
B1C2 + λ12D1A2 = hB2C1 + λ12A2D1

h
λ1 + a

λ2 + a
B1D2 + λ12D1B2 = λ̂12B2D1

λ̂12C1C2 = λ̂12C2C1

λ̂12C1D2 = λ12D2C1 + hC2D1

λ̂12D1C2 = hD2C1 + λ12C2D1

λ̂12D1D2 = λ̂12D2D1,

where we have also introduced, for these appendices only, the notation λ̂ij ≡ λi −λj +h, λij ≡
λi − λj .
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Glasgow Math. J. 43A 109–23

[28] Olver P J and Sokolov V V 1998 Integrable evolution equations on associative algebras Commun. Math. Phys.
193 245–68

[29] Papageorgiou V G, Grammaticos B and Ramani A 1993 Integrable lattices and convergence acceleration
algorithms Phys. Lett. A 179 111–5

[30] Papageorgiou V G, Nijhoff F W and Capel H W 1990 Integrable mappings and nonlinear integrable lattice
equations Phys. Lett. A 147 106–14

[31] Suris Yu B 1990 Discrete time generalized Toda lattices: complete integrability and relation with relativistic
Toda lattices Phys. Lett. A 145 113–9

[32] Veselov A P 1991 Integrable maps Russ. Math. Surv. 46 1–51
[33] Veselov A P 1991 What is an integrable mapping? What is Integrability? ed V E Zakharov (Berlin: Springer)

pp 251–72
[34] Volkov A Yu 1997 Quantum lattice KdV equation Lett. Math. Phys. 39 313–29
[35] Whitehouse L 1999 Masters Dissertation The University of Leeds (Supervisor F W Nijhoff)
[36] Wiersma G L and Capel H W 1987 Lattice equations, hierarchies and Hamiltonian structures Physica A 142

199–244


	1. Introduction
	2. The lattice KdV equation
	3. Finite staircase initial value problem
	3.1. The even staircase
	3.2. The odd staircase

	4. Lax matrices
	5. Invariants
	6. Exact solution of the discrete operator equations of motion
	6.1. Linear
	6.2. Linear
	6.3. Reconstruction

	7. Quantum mappings and the Yang--Baxter structure
	8. Specific example of the `even' mapping
	9. Specific example of the `odd' mappings
	10. Summary
	Acknowledgments
	Appendix A. RTT
	Appendix B. R(2j-1)TT
	References

